TOO_MANY_ROWS ORA-01422 Single row SELECT returned more
data.
value.

PROGRAM_ERROR ORA-06501 PL/SQL experienced an internal
error.

ZERO_DIVIDE ORA-01476 Attempt to divide by zero

DECLARE
v_lname VARCHAR2Z(20)
BEGIN
SELECT last_name INTO
FROM emp WHERE first_name
EXCEPTION
WHEN TOO MANY ROWS THEN
DBMS_OUTPUT.PUT_LINE ('Your gquery returned
more than a single row into a scalar variable’);
WHEN OTHERS THEN..
END;

Note the WHEN OTHERS THEN... clause. This enables you to trap unexpected
errors and thus avoid abnormal program termination.

Non-predefined Server Error:

You name the standard ORA-oocx errors and then refer to them in the
exception section as such. Uses a PRAGMA clause to pass the directive to the
i te the SOLERRM reference in the EXCEPTION SECTION — This
prints the ndard ORA-error message. (This demonstration is for showing
sysntac and basic usage. Oracle already provide’s a NULL insert error.)

TION_ INIT
t, -01400};
BEGIN
INSERT INTC emp VALUES (NULL, ‘Plum’};
EXCEPTION
WHEN null insert THEN
PUT.PUT_LINE ('NULL insert not allowed.};
PUT.PUT_LINE (SQLERRM) ;

RAISE_APPLICATION_ERROR:

Allows you to determine the error condition and RAISE tl

on logic inside your program. The user defined errors ar:

user/app in a manner consistent with ORA-errors. You assignan ORA-error
between -20000 and -20999. Note use of 5 OTFOUND. This is an implicit
cursor attribute that returns TRUE/FALSI mmediately preceding SQL
statement. (Oracle already provide's a standard NO_DATA_FOUND error.)

RAISE APPLICATION ERROR (err-num, message}

BEGIN
DELETE FROM emp WHERE sal > 1000000
EXCEPTION
WHEN NO DATA FOUND THEN
RAISE_APPLICATION ERROR (-20201, ‘No one in
that salary range.);
END;

RTPT]
Perpetual

Technologies, Inc.

Perpetual Technologies, Inc. (PTI)
provides mission-critical database and
information systems support to
commercial and government enterprises
worldwide. Focused on improving
performance and lowering costs, our
subject-matter experts plan, design,
develop, deploy, and manage Oracle
database environments running on UNIX
and Windows platforms. Perpetual
Technologies strives to create tailored,
flexible IT solutions in the areas of
Oracle database 8i, 9i, 10g, Oracle RAC,
capacity planning, disaster recovery
planning, performance tuning, Oracle
Application Server , Oracle content
manager, Oracle database design,
complete or supplemental remote
Oracle database administration, afterhours
DBA coverage, and Oracle
database vacation support.

Technologies, Inc.

9155 Harrison Park Court
Indianapolis, IN 46216
800-538-0453
www.perptech.com

Perpetual

Technologies, Inc.

ORACLE PL/SQL

Quick Reference Guide
Beginning User

Service Excellence
for the Data Driven Enterprise.

Perpetual Technologies, Inc.

Service Excellence for the Data Driven Enterprise.

Oracle PL/SQL QUICK GUIDE
FOR THE BEGINNING USER

PL/SQL is a 3GL programming language proprietary to Oracle that
offers procedural extensions to SQL. It uses embedded 50L to
access and manipulate data in the database. The following provides
some PL/SQL fundamentals to the beginning user.

Basic LOOP:

PL/SQL MODULARIZED BLOCK STRUCTURE

DECLARE --declarative section

(Declarations of scalar and composite variables, constants,
cursors, types, exceptions)

BEGIN --executable sectien
(Embedded SQL statements, PL/SQL conditional IF/THEN logic,
LOOPs, variable assignments, nested blocks. May be nested to
many levels.)
EXCEPTION --exception section

(Error handling routines to “trap” errors)

END; --ends the executable section

BASIC BUILDING BLOCKS

Common Delimiters and their purpose:

DECLARE
v_fname VARCHAR2 (20) := ‘Smith’; N]
Cc tax NUMBER := .08; Loop executes at least once before the EXIT WHEN condition is
v_saledate DATE; evaluated.
DECLARE
Embedded SQL: x NUMBER := 1;
BEGIN
In order to work with data from the database, it must be retrieved into Loor
local variables, and any changes are then sent back to the database. Note el g
the SELECT that retrieves a single row, single column value INTO the local itéEEifiﬁ.Z;
scalar variable. This allows us to work with database data inside of our EXIT‘I:IHEN ;{ > 10;
PL/saL. END LOOP;
END;
DECLARE
[1L WHILE LOOP :
BEGIN
SELECT phone_num INTO v_ph FROM emp
WHERE last name='Smith’; Loop will only execute until condition evaluates to true. If the condition
EG LI 9999995999; immediately evaluates to true, the loop will not execute even once.
UPDATE emp SET phone_num=v_ph
WHERE last name='Smith’;
END; = DECLARE
X NUMEER := 1;
BEGIN
CONDITIONAL CONTROL e e
statementl;
statement2;
f . . X o= X+l
IF/THEN Logic and CASE expressions: N
END;
Enables conditional control of statement execution. The first statement
that evaluates to true is executed and the remaining statements are FOR LOOP:

skipped. Place the most likely true statements first to avoid unnecessary
evaluation.

=l= <> Comparison operators: equal to, not-equal to, greater than,
less than

= Variable or constant assignment operator

Colon - precedes a bind variable (x =:var)

: Semi-colon - Termminates SAL and PL/SQL statements

|l Concatenation operator

DECLARE
x NUMBER :=10;
BEGIN
IF x = 5 THEN..;
ELSIF x = 20 THEN..;
ELSE..;
END IF;
END;

Loop will execute a pre-defined number of times. Lower and upper
bounds must evaluate to an integer. (lower_bound..upper_bound)
Counter identifier is implicitly declared and has is visible only within the
context of the loop.

+-*F Arithmetic operators
- 2 hyphens: Denotes a comment to the end of the line
R Denotes a multi-line comment

Scalar Variables: (Composite variables are not discussed here)

CASE Expressions:

Named with an identifier and datatype, and optionally initialized, in the
declarative section. Assigned and re-assigned values in the executable
section. Visible to immediate and nested blocks only.

Constants:

DECLARE
X NUMEER :=10;

BEGIN

¥ := CASE x

WHEN 5 THEN..;
WHEN 20 THEN..;
END;

END;

DECLARE
% NUMBER := 10;
BEGIN
FOR i IN 1..x LOOP
statementl;
statementz;
i= i+1;
END LCOF;
END;

EXCEPTION HANDLING

Named with an identifier and MUST be initialized in the declarative
section. Assigned value will not change during execution.

ITERATIVE CONTROL WITH LOOPS

identifier [CONSTANT] DATATYPE [NOT NULL]
[:= | DEFAULT expression];

LOOPs allow us to repeat a statement or set of statements over and over.
The number of iterations can be either pre-determined or based upon
some condition.

Exception handling is a powerful PL/SQL feature that lets the developer
decide what to do when an error occurs in the program. The error
might be an ORA-xxxxx server error or one that the programmer defines
based on certain business rules. When an exception is handled it is
“trapped” and execution continues in the enclosing block or calling
procedure. If an exception is not trapped, the program will terminate
abruptly and the error will propagate to the calling environment.

Predefined Oracle server errors (Partial list, est 20 available):

